BIOCHEMISTRY 2 [1203253]

The University of Jordan Faculty: Pharmacy Department: Biopharmaceutics and Clinical Pharmacy Program: Pharmacy Academic Year/ Fall Semester: 2014/15

Credit hours	3	Level	2 nd year	Pre-requisite	-
Coordinator/ Lecturer	Prof. Dr. Yasser K. Bustanji Dr. Areej Assaf	Office number	bustanji@ju.edu.jo areej_assaf@ju.edu.jo	Office phone	
	Dr. Violet Kasabri		v.kasabri@ju.edu.jo		
Course website	-	E-mail		Place	Pharmacy

Course Objectives:

This course is the second course in a two-semester sequence in biochemistry. The students are expected to:

- 1- Use the knowledge gained in Biochemistry I to understand the basic concepts of metabolism
- 2-Understand the metabolic pathways of the major biomolecules; carbohydrate, lipids, proteins and nucleotides.
- 3-Understand the main issues regarding the storage and expression of genetic information

Learning Outcomes:

A. Knowledge and Understanding of:

A1. DNA, RNA, AND THE FLOW OF GENETIC INFORMATION

A1.1 Nucleotide Biosynthesis

- Recycled by Salvage Pathways
- ର୍ଷ Deoxyribonucleotides Synthesized by the Reduction of Ribonucleotides Through a Radical Mechanism
- 🗞 Key Steps in Nucleotide Biosynthesis Are Regulated by Feedback Inhibition
- A In de Novo Synthesis, the Pyrimidine Ring Is Assembled from Bicarbonate, Aspartate, and Glutamine
- R Nucleoside Monophosphate Kinases: Catalyzing Phosphoryl Group Exchange between Nucleotides Without Promoting Hydrolysis
- ষ্ট্র Disruptions in Nucleotide Metabolism Can Cause Pathological Conditions

A1.2 DNA Structure, Replication, Recombination, and Repair

- A Nucleic Acid Consists of Four Kinds of Bases Linked to a Sugar-Phosphate Backbone
- 🔉 A Pair of Nucleic Acid Chains with Complementary Sequences Can Form a Double-Helical Structure
- S DNA Is Replicated by Polymerases that Take Instructions from Templates
- S DNA Can Assume a Variety of Structural Forms
- S DNA Polymerases Require a Template and a Primer
- 3 Double-Stranded DNA Can Wrap Around Itself to Form Supercoiled Structures
- 3 DNA Replication of Both Strands Proceeds Rapidly from Specific Start Sites
- S Double-Stranded DNA Molecules with Similar Sequences Sometimes Recombine

A1.3 RNA Synthesis and Splicing

- ৯ Transcription Is Catalyzed by RNA Polymerase
- ষ্ট্র Eukaryotic Transcription and Translation Are Separated in Space and Time
- R The Transcription Products of All Three Eukaryotic Polymerases Are further subjected to downstream processing
- Nost Eukaryotic Genes Are Mosaics of Introns and Exons

A1.4 Protein Synthesis

- ষ্ণ Gene Expression Is the Transformation of DNA Information Into Functional Molecules
- ৯ Amino Acids Are Encoded by Groups of Three Bases Starting from a Fixed Point
- Requires the Translation of Nucleotide Sequences Into Amino Acid Sequences
- ৯ Mutations Involve Changes in the Base Sequence of DNA
- ৯ Aminoacyl-Transfer RNA Synthetases Read the Genetic Code
- 🗞 A Ribosome Is a Ribonucleoprotein Particle (70S) Made of a Small (30S) and a Large (50S) Subunit
- Roles in Protein Factors Play Key Roles in Protein Synthesis
- Reukaryotic Protein Synthesis Differs from Prokaryotic Protein Synthesis Primarily in Translation Initiation and subsequent coupling reactions.
- A1.5 The Gene Expression Regulation
 - Reputation of the second state of the second s
 - A The Greater Complexity of Eukaryotic Genomes Requires Elaborate Mechanisms for Gene Regulation
 - R Transcriptional Activation and Repression Are Mediated by Protein-Protein Interactions
 - Some Receptors Dimerize in Response to Ligand Binding and Signal by Cross-phosphorylation
 - S Gene Expression Can Be Controlled at Posttranscriptional Levels

A1.6 Molecular basis of inherited diseases

- Restriction Enzymes: Performing Highly Specific DNA-Cleavage Reactions
- R DNA recombinations are helpful in establishing genomic as well as cDNA libraries
- Antibiotic resistance genes can select for the transfected cloning vector.
- A The utility of Sanger dideoxy method is basically for purified DNA sequencing.
- Restriction Fragment Length Polymorphism analysis is a direct diagnostic tool of sickle cell disease.
- Relymerase chain reaction is highly advantageous in detecting/tracing low abundance nucleic acid sequences
- R Microarray technique is quite a handy Analytical means of determinations of the gene expression products.
- 🗞 ELISA and Western blots can be Important Techniques to investigate specific proteins.

A2. TRANSDUCING & STORING OF ENERGY INTERMEDIARY METABOLISM

A2. 1 Glycolysis and Gluconeogenesis

- ৯ Metabolism Is Composed of Many Coupled, Interconnecting Reactions
- ষ্ঠ The Oxidation of Carbon Fuels Is an Important Source of Cellular Energy
- 🗞 Glycolysis Is an Energy-Conversion Pathway in Many Organisms
- ম The Glycolytic Pathway Is Tightly Controlled
- S Glucose Can Be Synthesized from Noncarbohydrate Precursors
- ষ্ট্র Gluconeogenesis and Glycolysis Are Reciprocally Regulated

A2. 2 Citric Acid Cycle

- ষ্ট্র The Citric Acid Cycle Oxidizes Two-Carbon Units
- ষ্ট্র Entry to the Citric Acid Cycle and Metabolism Through It Are Controlled

ই The Citric Acid Cycle Is a Source of Biosynthetic Precursors. Amino Acids Are Made from Intermediates of the Citric Acid Cycle and Other Major Pathways

A2. 3 The Pentose Phosphate Pathway

- 🗞 the Pentose Phosphate Pathway Generates NADPH and Synthesizes Five-Carbon Sugars
- R The Metabolism of Glucose 6-Phosphate by the Pentose Phosphate Pathway Is Coordinated with Glycolysis
- S Glucose 6-Phosphate Dehydrogenase Plays a Key Role in Protection Against Reactive Oxygen Species
- A2. 4 Glycogen, hexoses and disaccharides Metabolism
 - 🗞 Glycogen Breakdown Requires the Interplay of Several Enzymes
 - Republic Phosphorylase Is Regulated by Allosteric Interactions and Reversible Phosphorylation
 - 🗞 Epinephrine and Glucagon Signal the Need for Glycogen Breakdown
 - ষ্ট্র Glycogen Is Synthesized and Degraded by Different Pathways
 - ৯ Glycogen Breakdown and Synthesis Are Reciprocally Regulated
 - \Im All hexoses are to be phosphorylated before they are any further metabolized
 - \mathfrak{A} Hexose epimerase can substitute for lacking dietary sources of galactose
 - ৯ Lactose synthesis is mainly mediated by galactosyltransferases

A3. LIPID METABOLISM

A3. 1 Fatty Acid Metabolism

- ৯ Triacylglycerols Are Highly Concentrated Energy Stores
- ষ্ট্র The Utilization of Fatty Acids as Fuel Requires Three Stages of Processing
- ৯ Certain Fatty Acids Require Additional Steps for Degradation
- 🗞 Fatty Acids Are Synthesized and Degraded by Different Pathways
- Acetyl Coenzyme A Carboxylase Plays a Key Role in Controlling Fatty Acid Metabolism via Carnitinr shuttle modulation
- 3 Elongation and Unsaturation of Fatty Acids Are Accomplished by Accessory
- 🗞 Ketogenesis is strictly hepatic and ketone bodies can be consumed by brain as well as muscle cells
- A3. 2 The Biosynthesis of Membrane Lipids and Steroids
 - Representation of the synthesis of Phospholipids and Triacylglycerols
 - S Cholesterol Is Synthesized from Acetyl Coenzyme A in Three Stages
 - 3 The Complex Regulation of Cholesterol Biosynthesis Takes Place at Several Levels
 - 🗞 Important Derivatives of Cholesterol Include Bile Salts and Steroid Hormones

A4. PROTEIN TURNOVER AND AMINO ACID CATABOLISM

- ষ্ণ Proteins Are Degraded to Amino Acids
- A Protein Turnover Is Tightly Regulated
- ৯ Many Enzymes Are Activated by Specific Proteolytic Cleavage
- 🗞 The First Step in Amino Acid Degradation Is the Removal of Nitrogen
- ষ্ট্র Ammonium Ion Is Converted Into Urea in Most Terrestrial Vertebrates
- 🎗 Carbon Atoms of Degraded Amino Acids Emerge as Major Metabolic Intermediates
- 🗞 Inborn Errors of Metabolism Can Disrupt Amino Acid Degradation
- Amino Acids Are Precursors of Many Biomolecules

A5. THE INTEGRATION OF METABOLISM

- ৯ Metabolic Pathways Contain Many Recurring Motifs
- ষ্ণ Metabolism Consist of Highly Interconnected Pathway
- 🗞 Each Organ Has a Unique Metabolic Profile

- 🗞 Food Intake and Starvation Induce Metabolic Changes
- 🗞 Ethanol Alters Energy Metabolism in the Liver
- Reptide hormones, namely insulin and glucagon, are actively involved in reciprocal regulation of metabolism during absorptive and postabsorptive phases
- B. Intellectual skills (cognitive and analytical):
 - \bowtie Integrate metabolic pathways, and analyze the complete integrated metabolic map.
 - ${\mathfrak R}$ Interpret metabolic abnormalities and relate them to possible causes and mechanisms.
 - Relate the biochemical events at the cellular level to the physiological processes occurring in the whole animal.
 - 𝔅 Follow up the flow of genetic information; DNA→RNA→Protein
- C. Subject specific skills
- D. Transferable Skills
 - \propto The development of problem solving and critical thinking skills.
 - A Use oral communication to effectively transmit ideas and conclusions to a scientific audience.

D			
R	lefer	enr	· 20'
		CIR	<u></u>

<u>Kelerences.</u>			
ISBN	Title	Author	Year
716712261	BIOCHEMISTRY 4TH EDITION	STRYER, LUBERT	1995C
	BIOCHEMISTRY LIPPINCOTT'S	CHAMPE, PAMELA; HARVEY,	
	ILLUSTRATED REVIEWS, 4TH	RICHARD; FERRIER, DENISE;	
781769604	EDITTION	COOPER, MICHAEL	2008C
	LEHNINGER PRINCIPLES OF		
7167743396	BIOCHEMISTRY	LEHNINGER, ALBERT	2005C
	HARPER'S ILLUSTRATED	MURRAY, ROBERT K. (ROBERT	
9780071765763	BIOCHEMISTRY-27ED.	KINCAID)	2012
	essentials of human		
0272797138	BIOCHEMISTRY	PATERSON, COLIN RALSTON	1983

Lecture notes are available on http://blackboard.ju.edu.jo User name: pharm_std Password: pharm_std

Course Contents and Schedule	
<u>Subject</u>	No. of lectures
Introduction	1
Storage and expression of genetic information.	
Nucleotide metabolism.	3
 DNA structure and replication 	3
RNA structure and synthesis	2
Protein Synthesis	3
Regulation of gene expression	3
Molecular basis of inherited disease	5
Intermediary metabolism.	
• Glycolysis.	2
Gluconeogenesis.	2
 Hexose Monophosphate pathway 	2
Citric acid cycle.	2
MIDTERM	
Carbohydrate metabolism	•
Glycogen metabolism.	2
Metabolism of monosaccharides and disaccharides	
Lipid metabolism.	2
Metabolism of dietary lipids.	2
Fatty acid and triacylglycerol metabolism.	2
Phospholipid metabolism	1
Cholesterol and steroid metabolism.	3
Nitrogen metabolism.	2
Disposal of Nitrogen.	2
Metabolism of carbon skeleton.	1
Conversion of amino acids to specialized products	1
Integration of metabolism.	1
 Metabolic effects of insulin and glucagon. Metabolism in the well-fed state. 	1
	1
 Metabolism in starvation and diabetes mellitus 	l I

FINAL EXAM